Saturday, July 7, 2012

Tuesday, April 15, 2008

Red dwarf + funny monkey

According to the Hertzsprung-Russell diagram, a red dwarf star is a small and relatively cool star, of the main sequence, either late K or M spectral type. They constitute the vast majority of stars and have a mass of less than one-half that of the Sun (down to about 0.075 solar masses, which are brown dwarfs) and a surface temperature of less than 3,500 K.


Brown Dwarf-History-.-



Brown dwarfs, a term coined by Jill Tarter in 1975, were originally called black dwarfs, a classification for dark substellar objects floating freely in space which were too low in mass to sustain stable hydrogen fusion (the term black dwarf currently refers to a white dwarf that has cooled down so that it no longer emits heat or light). Alternative names have been proposed, including Planetar and Substar.


Early theories concerning the nature of the lowest mass stars and the hydrogen burning limit suggested that objects with a mass less than 0.07 solar masses for Population I objects or objects with a mass less than 0.09 solar masses for Population II objects would never go through normal stellar evolution and would become a completely degenerate star (Kumar 1963). The role of deuterium-burning down to 0.012 solar masses and the impact of dust formation in the cool outer atmospheres of brown dwarfs was understood by the late eighties. They would however be hard to find in the sky, as they would emit almost no light. Their strongest emissions would be in the infrared (IR) spectrum, and ground-based IR detectors were too imprecise at that time to readily identify any brown dwarfs.


Since those earlier times, numerous searches involving various methods have been conducted to find these objects. Some of those methods included multi-color imaging surveys around field stars, imaging surveys for faint companions to main sequence dwarfs and white dwarfs, surveys of young star clusters and radial velocity monitoring for close companions.

For many years, efforts to discover brown dwarfs were frustrating and searches to find them seemed fruitless. In 1988, however, University of California at Los Angeles professors Eric Becklin and Ben Zuckerman identified a faint companion to GD 165 in an infrared search of white dwarfs. The spectrum of GD 165B was very red and enigmatic, showing none of the features expected of a low-mass red dwarf star. It became clear that GD 165B would need to be classified as a much cooler object than the latest M dwarfs then known. GD 165B remained unique for almost a decade until the advent of the Two Micron All Sky Survey (2MASS) when Davy Kirkpatrick, out of the California Institute of Technology, and others discovered many objects with similar colors and spectral features.

Today, GD 165B is recognized as the prototype of a class of objects now called "L dwarfs". While the discovery of the coolest dwarf was highly significant at the time, it was debated whether GD 165B would be classified as a brown dwarf or simply a very low mass star, since observationally, it is very difficult to distinguish between the two.

Interestingly, soon after the discovery of GD 165B other brown dwarf candidates were reported. Most failed to live up to their candidacy however, and with further checks for substellar nature, such as the lithium test, many turned out to be stellar objects and not true brown dwarfs. When young (up to a gigayear old), brown dwarfs can have temperatures and luminosities similar to some stars, so other distinguishing characteristics are necessary, such as the presence of lithium. Stars will burn lithium in a little over 100 Myr, at most, while most brown dwarfs will never acquire high enough core temperatures to do so. Thus, the detection of lithium in the atmosphere of a candidate object ensures its status as a brown dwarf.

In 1995 the study of brown dwarfs changed dramatically with the discovery of three incontrovertible substellar objects, some of which were identified by the presence of the 6708 Li line. The most notable of these objects was Gliese 229B which was found to have a temperature and luminosity well below the stellar range. Remarkably, its near-infrared spectrum clearly exhibited a methane absorption band at 2 micrometres, a feature that had previously only been observed in gas giant atmospheres and the atmosphere of Saturn's moon, Titan. Methane absorption is not expected at the temperatures of main-sequence stars. This discovery helped to establish yet another spectral class even cooler than L dwarfs known as "T dwarfs" for which Gl 229B is the prototype.

Since 1995, when the first brown dwarf was confirmed, hundreds have been identified. Brown dwarfs close to Earth include Epsilon Indi Ba and Bb, a pair of dwarfs gravitationally bound to a sunlike star, around 12 light-years from the Sun.

Brown Dwarf !!!






Brown dwarfs are sub-stellar objects with a mass below that necessary to maintain hydrogen-burning nuclear fusion reactions in their cores, as do stars on the main sequence, but which have fully convective surfaces and interiors, with no chemical differentiation by depth. Brown dwarfs occupy the mass range between that of large gas giant planets and the lowest mass stars; this upper limit is between 75and 80 Jupiter masses (MJ).Currently there is some debate as to what criterion to use to define the separation between a brown dwarf from a giant planet at very low brown dwarf masses (~13 MJ ),and whether brown dwarfs are required to have experienced fusion at some point in their history. In any event, brown dwarfs heavier than 13 MJ do fuse deuterium and those above ~65 MJ also fuse lithium. The only planet known to orbit a brown dwarf is 2M1207b.

White Dwarf >>> Black Dwarf


A black dwarf is a hypothetical star,created when a white dwarf becomes sufficiently cool to no longer emit significant heat or light.Since the time required for a white dwarf to reach this state is calculated to be longer than the current age of the universe,13.7 billion years, no black dwarfs are expected to exist in the Universe yet, and the temperature of the coolest white dwarfs is one observational limit on the age of the universe.




A white dwarf is what remains of a main sequence star of low or medium mass (below approximately 9 to 10 solar masses),after it has either expelled or fused all the elements which it has sufficient temperature to fuse.What is left is then a dense piece of electron-degenerate matter which cools slowly by thermal radiation, eventually becoming a black dwarf.If black dwarfs were to exist, they would be extremely difficult to detect, since, by definition, they would emit very little,if any, radiation. One theory is that they might be detectable through their gravitational influence.




Since the far-future evolution of white dwarfs depends on physical questions,such as the nature of dark matter and the possibility and rate of proton decay, which are poorly understood, it is not known precisely how long it will take white dwarfs to cool to blackness.IIIE,IVA.Barrow and Tipler estimate that it would take 1015 years for a white dwarf to cool to 5 K;however, if weakly interacting massive particles exist, it is possible that interactions with these particles will keep some white dwarfs much warmer than this for approximately 1025 years.IIIE.If the proton is not stable, white dwarfs will also be kept warm by energy released from proton decay. For a hypothetical proton lifetime of 1037 years, Adams and Laughlin calculate that proton decay will raise the effective surface temperature of an old one-solar mass white dwarf to approximately 0.06 K. Although cold, this is thought to be hotter than the temperature that the cosmic background radiation will have 1037 years in the future.IVB.

The name black dwarf has also been applied to sub-stellar objects which do not have sufficient mass, approximately 0.08 solar masses, to maintain hydrogen-burning nuclear fusion.These objects are now generally called brown dwarfs, a term coined in the 1970s.Also, black dwarfs should not be confused with black holes or neutron stars.

Friday, April 11, 2008

Formation of the White Dwarf


Formation
White dwarfs are thought to represent the end point of stellar evolution for main-sequence stars with masses from about 0.07 to 10 solar masses.The composition of the white dwarf produced will differ depending on the initial mass of the star.

Stars with very low mass
If the mass of a main-sequence star is lower than approximately half a solar mass, it will never become hot enough to fuse helium at its core. It is thought that, over a lifespan exceeding the age (~13.7 billion years)of the Universe, such a star will eventually burn all its hydrogen and end its evolution as a helium white dwarf composed chiefly of helium-4 nuclei. Owing to the time this process takes, it is not thought to be the origin of observed helium white dwarfs. Rather, they are thought to be the product of mass loss in binary systems or mass loss due to a large planetary companion.

Stars with low to medium mass
If the mass of a main-sequence star is between approximately 0.5 and 8 solar masses, its core will become sufficiently hot to fuse helium into carbon and oxygen via the triple-alpha process, but it will never become sufficiently hot to fuse carbon into neon. Near the end of the period in which it undergoes fusion reactions, such a star will have a carbon-oxygen core which does not undergo fusion reactions, surrounded by an inner helium-burning shell and an outer hydrogen-burning shell. On the Hertzsprung-Russell diagram, it will be found on the asymptotic giant branch. It will then expel most of its outer material, creating a planetary nebula, until only the carbon-oxygen core is left. This process is responsible for the carbon-oxygen white dwarfs which form the vast majority of observed white dwarfs.

Stars with medium to high mass
If a star is sufficiently massive, its core will eventually become sufficiently hot to fuse carbon to neon, and then to fuse neon to iron. Such a star will not become a white dwarf as the mass of its central, non-fusing, core, supported by electron degeneracy pressure, will eventually exceed the largest possible mass supportable by degeneracy pressure. At this point the core of the star will collapse and it will explode in a core-collapse supernova which will leave behind a remnant neutron star, black hole, or possibly a more exotic form of compact star.Some main-sequence stars, of perhaps 8 to 10 solar masses, although sufficiently massive to fuse carbon to neon and magnesium, may be insufficiently massive to fuse neon. Such a star may leave a remnant white dwarf composed chiefly of oxygen, neon, and magnesium, provided that its core does not collapse, and provided that fusion does not proceed so violently as to blow apart the star in a supernova.[97][98] Although some isolated white dwarfs have been identified which may be of this type, most evidence for the existence of such stars comes from the novae called ONeMg or neon novae. The spectra of these novae exhibit abundances of neon, magnesium, and other intermediate-mass elements which appear to be only explicable by the accretion of material onto an oxygen-neon-magnesium white dwarf.

Fate
A white dwarf is stable once formed and will continue to cool almost indefinitely; eventually, it will become a black white dwarf, also called a black dwarf. Assuming that the Universe continues to expand, it is thought that in 1019 to 1020 years, the galaxies will evaporate as their stars escape into intergalactic space.§IIIA. White dwarfs should generally survive this, although an occasional collision between white dwarfs may produce a new fusing star or a super-Chandrasekhar mass white dwarf which will explode in a type Ia supernova.§IIIC, IV. The subsequent lifetime of white dwarfs is thought to be on the order of the lifetime of the proton, known to be at least 1032 years. Some simple grand unified theories predict a proton lifetime of no more than 1049 years. If these theories are not valid, the proton may decay by more complicated nuclear processes, or by quantum gravitational processes involving a virtual black hole; in these cases, the lifetime is estimated to be no more than 10200 years. If protons do decay, the mass of a white dwarf will decrease very slowly with time as its nuclei decay, until it loses so much mass as to become a nondegenerate lump of matter, and finally disappears completely.§IV.


Stellar system
A white dwarf's stellar and planetary system is inherited from its progenitor star and may interact with the white dwarf in various ways. Infrared spectroscopic observations made by NASA's Spitzer Space Telescope of the central star of the Helix Nebula suggest the presence of a dust cloud, which may be caused by cometary collisions. It is possible that infalling material from this may cause X-ray emission from the central star.[102][103] Similarly, observations made in 2004 indicated the presence of a dust cloud around the young white dwarf star G29-38 (estimated to have formed from its AGB progenitor about 500 million years ago), which may have been created by tidal disruption of a comet passing close to the white dwarf.[104] If a white dwarf is in a binary system with a stellar companion, a variety of phenomena may occur, including novae and Type Ia supernovae.

The Combined XSC and PSC Allsky

2MASS Local Universe: As seen in the 2MASS Near-Infrared bands: J (1.2 microns), H (1.6 microns) and Ks (2.2 microns). The All Sky image is composed of sources with integrated fluxes brighter than Ks=14th mag, comprising the 2MASS Extended Source Catalog (XSC) -- more than 1.6 million galaxies, and the Point Source Catalog (PSC) -- nearly 0.5 billion Milky Way stars (here tinted in blue to show contrast with the background galaxies.) The map is projected with an equal area aitoff in the Geo-equatorial system (centered at 6 hr Right Ascension). The plane of the Milky Way runs diagonally across the image, with the Galactic anti-center facing you.

Note: Known Milky Way sources (e.g., HII regions) have been removed from the XSC ALLSKY image, and thus the remaining XSC image is nearly 100% extragalactic in nature. Galactic (Milky Way) sources are primarily confined to the Plane of the Galaxy, as is easily seen in the XSC vs. PSC movie shown below.


SuperGalactic View of the Local Universe



2MASS Integrated Flux Allsky Movie
Aitoff equal-area projection of the integrated PSC and XSC flux for cummulative mag bins. See the LSS chart for image orientation and Large Scale Structure map. The PSC FITS images are courtesy of John Carpenter.